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The flow field of an airfoil oscillated periodically over a reduced frequency range, 
0 6 k 6 1.6, is studied experimentally at chord Reynolds numbers of R, = 22000 and 
44000. For most of the data, the NACAOO12 airfoil is pitched sinusoidally about one 
quarter chord between angles of attack a of 5" and 25". The cyclic variation of the near 
wake flow field is documented through flow visualization and phase-averaged vorticity 
measurements. In addition to the familiar dynamic stall vortex (DSV), an intense 
vortex of opposite sign is observed to originate from the trailing edge just when the 
DSV is shed. The two together take the shape of the cross-section of a large 
'mushroom' while being convected away from the airfoil. The phase delay in the 
shedding of the DSV with increasing k, as observed by previous researchers, is 
documented for the full range of k. It is observed that the sum of the absolute values 
of all vorticity convected into the wake over a cycle is nearly constant and is 
independent of the reduced frequency and amplitude of oscillation but dependent on 
the mean a. The time varying component of the lift is estimated in a novel way from 
the shed vorticity flux. The analytical foundation of the method and the various 
approximations are discussed. The estimated lift hysteresis loops are found to be in 
reasonable agreement with available data from the literature as well as with limited 
force balance measurements. Comparison of the lift hysteresis loops with the 
corresponding vorticity fields clearly shows that the major features of the lift variation 
are directly linked to the evolution of the large-scale vortical structures and the phase 
delay phenomenon. 

1. Introduction 
The phenomenon of dynamic stall on airfoils and lifting surfaces in unsteady flow 

environments has been studied experimentally and computationally for many years, 
both as an important practical problem and a challenging fundamental one as well. 
The phenomenon appears on helicopter rotor blades, rapidly manoeuvring aircraft, 
fluttering compressor blades, wind turbines and even fish tails and insect wings. It is 
now well known that the unsteady fluid mechanics of an airfoil pitched above the static 
stall limit is characterized by the formation of a strong vortex on the suction surface, 
known as the dynamic stall vortex (DSV), which is eventually shed into the wake. 
Presence of the DSV on the airfoil upper surface causes a dramatic increase in the 
airfoil lift which, however, decreases suddenly when the DSV is shed. Overviews of this 
dynamic stall phenomenon can be found in the papers by McCroskey (1982) and Carr 
(1 985). 

The flow field of an airfoil pitched periodically about a fixed axis is primarily 
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influenced by the amplitude a,, the mean angle a,,,, and the frequency of oscillation 
f. Past studies on the subject indicate that the last parameter is the most influential. 
Non-dimensionalized as k = nfc/U,, the ‘reduced frequency’ represents the ratio of 
two timescales : one imposed by the pitching motion 1 /(2nf) ,  and the other by the free- 
stream velocity and the airfoil chord (conventionally half the chord is used), c/2U, .  
Most of the previous experimental (e.g. Carr, McAlister & McCroskey 1977; Leishman 
1990) and computational (e.g. Mehta 1978; Wu, Kaza & Sankar 1987; Visbal & Shang 
1988) studies on the phenomenon are confined to low values of k (< 0.4). Small- 
amplitude pitching motion at very high k has been studied by Koochesfahani (1987), 
among others, but the small amplitude (k4”) apparently precluded the possibility of 
dynamic stall. Low-Reynolds-number studies of an airfoil undergoing combined 
oscillating and translating motion by Ohmi et al. (1990, 1991) also covered a high range 
of k (0.63-6.3). At high k they observed vortex formation due primarily to airfoil 
oscillation rather than translation; the vortical structure in the wake was found to be 
dependent on both k and amplitude of oscillation. However, the experimental part of 
their study was limited to flow visualization only. Gad-el-Hak & Ho (1986) also 
covered a wide range of k (0.2-3.0); but the experiment, which involved an airfoil of 
small aspect ratio to study three-dimensional effects, was again limited to flow 
visualization only. 

Most previous flow-visualization studies focused on the formation and evolution of 
the DSV over the airfoil upper surface. In comparison, the structure of the downstream 
wake was addressed only in a few experiments. An understanding of the wake structure 
originating from the dynamic stall process is important for the analysis of more 
complex flows, e.g. in machinery involving rows of blades (Cumpsty 1989). Robinson, 
Helin & Luttges (1986) observed the formation of a ‘trailing-edge vortex’ and a 
‘tandem structure ’ in the wake of an oscillating airfoil. Gad-el-Hak & Ho (1986) also 
observed the formation of additional vortices owing to the motion of the trailing edge. 
They observed that the complex flow field of an oscillating airfoil results, primarily 
owing to the mutual induction between the DSV and the ‘trailing-edge shedding 
vortex’. In addition to the DSV, Ohmi et al. (1991) also observed vortical structures 
forming near the trailing edge whose strength depended on the velocity of the trailing 
edge and hence on the location of the pitch axis. In the early stages of the present study 
it became quite clear that the ‘trailing-edge vortex’ (TEV) could be as intense as the 
DSV. However, the role of the TEV, in comparison to that of the DSV, in the dynamics 
of the wake as well as in the unsteady forces exerted on the airfoil had remained 
unclear. 

The wealth of data from the NASA Ames experiments (McAlister et al. 1978, 1982; 
Carr 1977) primarily focused on the unsteady forces experienced by the airfoil. This is 
also the case with several other experiments providing quantitative data (e.g. Leishman 
1990). In only a few experiments were attempts made to measure the flow field and its 
cyclic variation. The vorticity distribution in the wake was measured by Mathioulakis 
et al. (1985) and by Booth (1987), but the measurements were limited in scope. The 
periodic flow provides an excellent opportunity to apply the phase-averaging technique 
in order to map the flow field and its variation with the oscillation phase. Such data 
could be quite helpful in computational studies of the subject and provide further 
insight into the mechanisms of the complex flow under consideration. 

The general issues brought forth in the foregoing provided the motivation for the 
present study. The experiment was initiated as a part of our continuing research on 
control of separated flows over airfoils and blades (Rice & Zaman 1987; Zaman, 
McKinzie & Rumsey 1989). The objective at this stage has been fundamental in scope, 
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FIGURE 1. (a) Schematic of wind-tunnel test section and airfoil oscillation mechanism. 
(b) Coordinate system and control volume for calculation of unsteady circulation. 

to advance the knowledge in the area, maintain in-house expertise, and aid in 
computational efforts. Initially, detailed phase-averaged flow field measurements and 
flow visualization were carried out for specific cases of airfoil oscillation. These results 
have been summarized in a conference paper (Panda & Zaman 1992). Only the 
highlights of these results are included here. 

During the analysis of the wake vorticity data, it occurred to us that the unsteady 
lift on the airfoil can be estimated from the vorticity flux shed into the wake. A detailed 
discussion of the analytical foundation of the method and the various approximations 
involved is deferred to a later section in the text. In short, the idea follows from the 
principle that the lift force acting per unit length of a pair of parallel, counter-rotating 
vortices of circulation r and -r, separated by a distance x ,  is equal to the rate of 
change of the associated impulse (von Karma, & Burgers 1943; Bisplinghoff, Ashley 
& Halfman 1955); force = d/dt(pxr). For the steady flow, the vortex pair is 
constituted by the ‘starting vortex system’ and the ‘bound vortex’ around the airfoil, 
and the above equation leads to the familiar Kutta-Joukowski theorem, L = pU? r. 
For the unsteady case, the shed vortices of circulation Sr in time 6t should, according 
to Kelvin’s theorem, correspond to an equal and opposite change in the circulation 
(- W) around the airfoil. By measuring W from the vorticity flux in the wake and an 
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average convection velocity U,,,, for the vortices, the change in the lift in time 6t could 
then be estimated as 6L = pU,,,, U'. The lift variation over the oscillation cycle, and 
hence the lift hysteresis loop, was thus constructed. Shortcomings in the formulation 
as well as the measurement and the choice of U,,,, are discussed later in the text. 
However, the method produced lift hysteresis loops that had remarkable similarities 
with previous measurements (McAlister et al. 1982). 

The method was attractive because the lift was obtained entirely from the wake 
survey. Determination of the forces on an oscillating airfoil is not an easy task. Force 
balance measurements can suffer from interference from structural resonances and 
static pressure distribution measurements can suffer from spatial resolution and sensor 
response limitations. 

Subsequently, the analytical foundation of the method was studied further. 
Alternative formulations, due to Theodorsen (1935) and in the format of the analysis 
of Wu (1981), were considered. There is also a 'non-circulatory' component of the 
unsteady lift owing to the inertia of the fluid moving with the oscillating airfoil, which 
was also considered following Theodorsen's analysis. The details of these are discussed 
in $4. Unfortunately, owing to experimental limitations, the lift hysteresis loops for the 
dynamic stall cases could not be measured directly for comparison. Only limited results 
could be obtained with a force balance for a case at a very low k,  with a,,,, = O", 
which involved smaller amplitude force variation. As will be shown, the lift variation 
obtained from the wake survey compared quite well with the direct measurement for 
this particular case. 

The aspect of unsteady lift estimation from the wake survey constitutes a major part 
of the present paper. Obtaining the lift hysteresis loop from the vorticity data also 
provided a unique opportunity to relate the various aspects of the lift variation directly 
to the vortical structures. In the following, the experimental procedure is first described 
in $2. The flow-visualization data, obtained by smoke-wire and smoke-injection 
techniques, are discussed in $ 3.1. The phase-averaged, spanwise component of vorticity 
(0,) (x, y ,  t), measured without invoking the Taylor hypothesis, are discussed in $3.2. 
Spatial distribution of (0,) (x, y )  for fixed t and fixed k,  and temporal distribution of 
( w , )  ( y ,  t )  for fixed x and different k are presented. The latter data are used to estimate 
the lift hysteresis loops. Section 4 is devoted to the lift calculation procedures and 
results. The main conclusions are then enumerated in $5.  

2. Experimental procedure 
The experiments were carried out in a low-speed wind tunnel, the details of which 

have been described elsewhere (Zaman et al. 1989). A two-dimensional model of a 
NACAOO12 airfoil with 10.2cm chord and an aspect ratio of 7.5 was mounted 
horizontally at the centre (mid-height) of the test section (figure 1 a). The airfoil was 
supported at the two ends by two 0.635 cm diameter rods each of which passed through 
a pair of cylindrical bearings housed in the tunnel walls. The pitching mechanism 
essentially consisted of a crank and a connecting-rod, together with a flywheel, to 
oscillate a lever arm. The lever arm (not visible in figure 1 a)  oscillated an output shaft 
which in turn was connected to one of the airfoil support rods via a flexible coupling. 
The oscillation amplitude was adjusted by changing the crank radius, and the 
oscillation frequency was adjusted by varying the motor r.p.m. The entire pitching 
mechanism was installed in a steel frame which was structurally isolated from the 
tunnel and secured to the vibration isolated bed plate of the test cell. 

The measurements were carried out using a crossed hot-wire probe. The probe could 
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be traversed in the streamwise ( x )  direction through a longitudinal slot in the test 
section floor and up and down in y for a given x, through an automated computer 
controlled traversing mechanism. The coordinates x and y are referenced to the airfoil 
trailing edge at 0" angle of attack (figure 1 b). All measurements reported are for the 
(x, y)-plane at the mid-span location. The assumption of two-dimensionality is implicit 
in the investigation; data documenting the two-dimensionality of the flow field have 
been presented by Panda & Zaman (1992). The maximum blockage to the flow 
occurring at a,,, = 25" was 8.5 YO. The probe movement, data acquisition and analysis 
were done by a MicroVAX 3300 computer. 

For all data presented, the airfoil was oscillated sinusoidally about the one quarter 
chord location. An optical pick-up mounted on the driving motor shaft was used to 
provide the reference signal for phase averaging. Experiments were conducted at chord 
Reynolds numbers R, = 22000 and 44000. Experiments for k < 0.4 were typically 
done at the higher R, and for higher k at the lower R,. For most of the data the angle 
of attack was nominally varied as a = 15"+ 1O0sin(2nt/T), where T ( =  l/f> is the 
period of oscillation. Limited experiments were conducted for oscillation amplitudes 
(a,) of 4.2", 7.2" and 14.1" with a,,,, FZ 15", and for a = 0" + 7.2" sin (2nt lT) .  In the 
following, the suffix u is used to indicate upstroke when a is increasing and d is used 
to indicate downstroke when a is decreasing. 

For the smoke-wire flow-visualization technique, a 0.005 in. nichrome wire was 
placed vertically either upstream of the airfoil or just downstream of the trailing edge. 
A flash unit was used to illuminate the smoke streaks which were photographed using 
a 35 mm camera. Control of the smoke-wire operation was not fine enough to produce 
photographs at desired values of a. For some earlier photographs a small rod, marked 
every 0.25 in. by white dots, was placed downstream of the trailing edge. The position 
of the airfoil trailing edge relative to the marker determined the approximate angle of 
attack. The direction of motion was inferred from reviewing a large ensemble of 
photographs. For later experiments the signal from a phototransistor, activated by the 
camera flash, was compared with the reference optical pick-up signal for determining 
a more accurately. Limited flow visualization was carried out using a smoke-injection 
technique. Cigar smoke was introduced through a small port on the pressure surface, 
$ chord from the leading edge and f span away from one end. Only a small amount of 
smoke was injected to avoid producing a smoke jet. 

As stated before, direct measurement of forces on the oscillating airfoil turned out 
to be difficult. Static pressure distribution measurement was not attempted because 
pressure transducers small enough to be fitted in the airfoil model yet having the 
required sensitivity for the low velocity range of operation were unavailable. A force 
balance, using load cells (Zaman & McKinzie 1991), was used to measure steady lift 
variation with a. The same balance was tried in an effort to measure the unsteady 
forces for the oscillating cases. However, harmonic distortion of the output signal 
became a problem; typically a harmonic near the structural resonance would become 
large especially at higher oscillation frequency. That the structural resonance was being 
excited became obvious when the stiffness of the support system was changed; this 
would result in a different harmonic (of the oscillation frequency) to become more 
prominent. For the a,,,, = 15" case, the force changes were large as the airfoil went 
in and out of stall and the harmonic distortion was severe even at very low values of 
f. With a,,,, = 0" and smaller amplitude (a, = 7.2"), the distortion was deemed 
minimal below an oscillation frequency of about 1 Hz. For such a case the lift variation 
with a was measured and compared with the wake survey results. This is presented in 
$4.2. 
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3. Experimental results 
3.1. Flow visualization 

Figure 2 shows a sequence of photographs at various phases of the oscillation cycle, 
for k = 0.2, CI = 15” + 10” sin (2nft) and R, = 44000. The flow is from left to right. The 
marker with white dots is visible near the trailing edge. Frames (a)-(f) show phases 
when the angle of attack a is increasing (upstroke) and frames (g)-(j) show phases 
when a is decreasing (downstroke). As CI increases, a clockwise vortex forms on the 
airfoil surface (frame (d)). This is the ‘dynamic stall vortex’ as referred to by previous 
researchers. With further increase in a, the DSV moves towards the trailing edge. When 
it reaches the trailing edge, a counter-clockwise vortex starts to form near the trailing 
edge (frame ( f ) ) .  This vortex becomes clearer in frame (g )  and can be seen more clearly 
in figure 3 .  The ‘trailing edge vortex’ (TEV) grows quickly beneath the DSV (frames 
cf) and (g))  and lifts the latter from the airfoil upper surface. The DSV and the TEV 
combine to form a structure whose cross-section looks like a mushroom. The 
‘mushroom’ structure evolves, moves upward and increases in size as it convects 
downstream (frames (A) ,  (i) and ( j ) ) .  In frame (i), at about 2; chords from the trailing 
edge, its transverse extent is already very large and measures about 3 chords. After the 
passage of the ‘mushroom’ structure, frames ( j )  and (a) indicate the passage of a few 
smaller vortices before flow reattachment takes place. 

Literature on the oscillating airfoil problem addresses the dynamic stall vortex in 
detail and points to it as the reason for high lift; however, the trailing-edge vortex and 
the ‘mushroom’ structure have remained relatively unnoticed. As stated in 8 1, such 
structures were observed by only a few, e.g. Robinson et al. (1986). The intense TEV 
and the enormous ‘mushroom ’ structure, which occur periodically at the oscillation 
frequency, could be quite significant in blade vortex interaction and aerodynamic noise 
generation especially in configurations involving rows of blades. 

Figure 3 shows photographs of the DSV and the TEV when the latter has just 
formed. The smoke-wire photographs of frames (a) and (b) are for R, = 22000 and the 
smoke injection photograph of frame (c) is for R, = 44000. In (a) only the outline of 
the two vortices can be seen when the smoke wire is located upstream. The TEV 
appears unambiguously in (b) when the smoke wire is located just downstream of the 
trailing edge. The strong reverse flow at this location, and instant, pulls the smoke 
upstream and the cores of the two vortices are thus marked. Frame (c) is obtained by 
smoke injection from a port f chord away from the leading edge. Although the smoke 
is injected on the pressure surface, the DSV on the suction surface entrains most of the 
smoke. By analysing several photographs, it is found that during the formation of the 
DSV, the stagnation point is located on the pressure surface downstream of the smoke 
injection port. Therefore, the injected smoke wraps around the leading edge and marks 
the DSV. When the TEV matures, as is the case for figure 3(c), the stagnation point 
moves back towards the leading edge and some smoke travels along the pressure 
surface to mark the TEV. 

The photographs of figure 3 demonstrate the formation of the TEV. It appears that 
when the DSV reaches the trailing edge, the associated low pressure rapidly pulls fluid 
with anti-clockwise vorticity from the pressure surface causing the formation of the 
TEV. While the DSV dwells on the suction surface over a large part of the oscillation 
cycle, the passage of the TEV takes place within a much smaller fraction of the cycle. 
It will be shown later that the formation of the TEV causes a large oscillation in the 
lower branch of the hysteresis loop of the Cl versus CI variation. Although initially small 
in size, the TEV grows to a large vortex when shed into the wake. The TEV is thrust 
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FIGURE 2. Smoke-wire flow-visualization photographs at different phases of the oscillation cycle; 
k = 0.2, a = 15"+ lO"sin2xft. Approximate a for (aHj) are 5"u, 14"u, 2Oou, 22"u, 24"u, 25"u, 25"d, 
20"d, 16"d, 12"d, respectively; u and d denote increasing and decreasing a. 

against the DSV as they move into the wake. The two together pull fluid from the lower 
side of the flow field and take the appearance of the 'mushroom'. 

3.1.1. Efec t  of reduced frequency 
Flow-visualization photographs for various k have been shown by Panda & Zaman 

(1992) and these will not be repeated here. These photographs show that at very low 
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FIGURE 3. Flow-visualization photographs for the phase when the dynamic stall vortex and the 
trailing-edge vortex are shed into the wake (a z 25"); k = 0.2, a = 15"+ 10" sin2nft. (a) smoke wire 
placed upstream of airfoil leading edge, (b) smoke wire downstream of trailing edge, (c) smoke 
injection from a port on the airfoil lower surface. 

k (  < 0.05) the DSV and the TEV are not clearly visible and the flow field appears to 
be in a quasi-steady state. Wake velocity spectra at such low k (in the cited reference) 
show the dominance of the bluff-body shedding that would have occurred if the airfoil 
were held at the maximum angle of attack. As k is increased above 0.1, the unsteady 
effects become prominent and the DSV, the TEV and the 'mushroom' structure 
become clear. At k = 0.2 the sequence of vortex formation is such that the DSV and 
the TEV leave the trailing edge together, and this is followed by the shedding of smaller 
vortices. As k is increased to about 0.4 a small clockwise vortex rolls up on the upper 
surface and is shed in the wake before the dynamic stall vortex, while other smaller 
vortices are suppressed. McAlister & Carr (1979) observed this smaller vortex 
preceding the DSV and called it the 'shear layer vortex'. 

With further increase in k,  a significant difference in the wake structure becomes 
evident. Figure 4 shows visualization photographs for k = 0.8 and 1.6, each for three 
phases of the oscillation cycle. It can be seen that while the 'mushroom' structure is 
still upright at k = 0.8, it appears upside down at k = 1.6. Relative locations of the 
various vortices for these two cases are sketched in figure 5.  At the lower k, the DSV 
is shed before the TEV and both of them move upwards in positive y .  On the other 
hand, at k = 1.6, the TEV is shed earlier than the DSV and the resulting 'inverted 
mushroom' remains in the same horizontal plane containing the pitch axis. 
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FIGURE 4. Smoke-wire flow visualization for two different k ;  R, = 22000, a = 15"+ lO'sin2nft. (a) 
k = 0.8; (b) k = 1.6. Approximate a from top to bottom for (a): 7"u, 23"u, 13.5"d and for (b): 5", 
15.5'~. and 25". 

An expected trend with increasing k is the decrease in the spacing (wavelength) of the 
vortices in the wake. For k = 0.2 the spacing is estimated to be more than 10 chords 
while for k = 1.6 it decreases to 1.5 to 2 chords. An interesting effect of varying k is the 
resulting phase delay in the shedding of the DSV. From photographs similar to those 
for k = 0.2 (figure 2), it is observed that the DSV starts to nucleate at about 01 = 8" 
during the upstroke. The time elapsed until the airfoil reaches a = 25" is enough in this 
case for the DSV to move to the trailing edge. However, when k is increased the time 
needed by the DSV to form, grow and move to the trailing edge becomes larger 
compared to the time taken by the airfoil to complete the upstroke. At k = 0.8 this time 
is about equal to the oscillation period and thus the shedding occurs at the end of the 
downstroke. A further increase in k, to say 1.6, causes two DSVs, one that has started 
to grow at the leading edge and one left from the previous cycle near the trailing edge, 
to reside on the airfoil suction surface simultaneously. The latter is shed in the upstroke 
part of the cycle. The occurrence of multiple vortical structures on the suction surface 
at high k has also been observed by Ohmi et al. (1991). 

Figure 6 shows a plot of the angles of attack and the phase (2nft) at which the centre 
of the DSV is approximately above the trailing edge before it is shed into the wake, for 
various k. The values of 01 and 2nft are related by a = 15" + 10" sin (2nft), Each data 
point is an estimate from several photographs similar to those shown in figure 2. 
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FIGURE 5. Schematic of observed vortex structure in the wake for indicated values of k.  
1, shear-layer vortex; 2, dynamic stall vortex; 3,  trailing-edge vortex. 
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FIGURE 6. Approximate phase, when the centre of the DSV is above the trailing edge, at different 
k.  -, data of McAlister et al. (1978). 

Within the uncertainty of the estimation, the variation appears to be nearly linear. The 
solid line represents data of McAlister et al. (1978) for the same oscillation condition 
but for a much higher Reynolds number (2.5 x 10'). The latter data represent the 
instants when the suction peak near the leading edge collapses. Good agreement of 
these data with the present result, within the k-range covered, indicates that the phase 
delay phenomenon for comparable airfoils may be essentially independent of Reynolds 
number. That Reynolds number is of secondary importance has been noted by 
previous researchers, e.g. McCroskey (1982). It is noteworthy here that McAlister et al. 
also showed that leading-edge modification, such as by use of a boundary-layer trip, 
can significantly alter the phase delay characteristics. The delay in shedding of the DSV 
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FIGURE 7. Contours of spanwise vorticity o,, normalized by U J c ,  for indicated a ;  k = 0.2, R, = 
44000, a = 15"+ lO"sin2nft. Contour levels for -, positive vorticity start at 0.5 and ---, for 
negative vorticity at -0.5 and are at an interval of 0.5. 

has a significant effect on the lift experienced by the airfoil at various k. This will be 
discussed later in 54. 

3.2. Flow field measurements 
The axial and transverse velocity components, ensemble averaged over many oscillation 
cycles, were measured in the wake as well as on the suction side of the airfoil outside 
the region covered by the pitching motion. The signals from the crossed hot-wire 
probes and the reference optical pick-up signal ($2) were stored in a digital computer. 
The data were acquired at several x-stations, and at each x-station for several 
transverse locations ( y ) .  These were post-processed to obtain the phase-averaged 
distributions of ( u )  and ( v ) .  Typically the averaging was done over 80 cycles. The 
spanwise vorticity component was given by 

which was non-dimensionalized as, (w , )  * = (w , )  c l  Urn. 
The distributions of (w,)*  for six phases are shown in figure 7 for k = 0.2; the 

instantaneous values of a are indicated. For k = 0.2, the distance through which the 
flow structures convect downstream in a period of oscillation is much larger than that 
covered by the measurement domain. Hence, each frame shows the wake structure for 
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a small fraction of the 'wavelength'. The data acquisition rate was chosen such that the 
phase-averaged distributions were computed for 50 timesteps per cycle. Data for six 
timesteps, capturing the essential features of the vortical structures, are shown and 
further data including the corresponding (u) -  and (v)-distributions can be found in 
Panda & Zaman (1992). Note that the phases for the different frames in figure 7 are 
not at equal intervals. The measurement domain was divided into two parts; one over 
the suction surface and one downstream in the wake. Since results from the two sets 
are patched together there is some mismatch at the interface. The mismatch is believed 
to be mainly due to a slight phase drift between the two sets of measurements. 

During the initial part of the cycle, as a is increased, the measurement region is 
relatively quiet and large vortices are absent. The wake region is marked by clockwise 
vorticity above the trailing edge and counter-clockwise vorticity below it. As the angle 
of attack is increased above 8", a small vortical region is observed to nucleate near the 
airfoil quarter chord and grows rapidly with accumulation of positive vorticity. The 
nucleation of this vortical region over the airfoil is accompanied by an interesticg 
change in the wake vorticity distribution. The negative vorticity in the lower part of the 
wake remains as is but the positive vorticity in the upper part of the wake depletes 
dramatically (e.g. at a = 20.7"~). The positive vorticity, generated on the airfoil suction 
surface which otherwise would have shed into the wake, starts to accumulate leading 
to the formation of the dynamic stall vortex. 

Increasing a above about 18" causes a large portion of the accumulated vorticity to 
move towards the trailing edge. This represents the dynamic stall vortex and is marked 
as V1 in figure 7. The shedding of the DSV, generation of the TEV (V2) and the 
'mushroom ' structure, and the subsequent formation of the smaller vortices observed 
in the vorticity data match well with the sequence observed with the flow-visualization 
pictures. It is interesting to note that each of the clockwise vortices (Vl, V3, V5) is 
followed up by a counter-clockwise vortex (V2, V4, V6). Therefore, the wake contains 
a series of clockwise and counter-clockwise vortices the strongest pair is made of the 
DSV (Vl) and the TEV (V2). 

The streamwise convection velocity of the different vortices could be calculated from 
the detailed space-time vorticity data. This was done by tracking the centres of the 
individual vortices over successive timesteps. The convection velocity, obtained 
thereby, was somewhat lower for the larger vortices and also when the vortices were 
closer to the airfoil. Based on these data an average streamwise convection velocity 
U,,,,/U, = 0.6 was determined for the case of figure 7. This value was cross-checked 
by measuring the phase velocity at the fundamental about the streamwise station 
x/c = 0.3. The value U,,,,/U, = 0.6 was also found to be representative even when k 
was varied for the oscillation case under consideration. However, it changed 
considerably with variation of a, and amean. For example, U,,,,/U, = 0.8 was 
measured for the case a = O0+7.2sin(2n$). These values of U,,,, are used in the lift 
estimation procedure discussed in the next section. 

As indicated before, a crossed hot-wire probe was used to measure the velocity 
components after going through a standard yaw calibration. There are some errors in 
these measurements, especially owing to hot-wire rectification during instants of large 
flow angularity and flow reversal. There is no easy way to assess the errors accurately 
and the exact extent of the errors in ( u )  and ( 0 )  measurements have remained 
unknown. However, an idea about the magnitude of the errors can be obtained by 
checking continuity at each measurement point. The departure of the quantity 
(a ( u ) / a x  + a (u) /ay)  from zero, representing the departure from satisfying continuity, 
can be considered to be an indicator of the error in the measurement. Figure 8 shows 



Experimental investigation of the flow field of an oscillating airfoil 77 

.: .,, 

-0.3 -j t 
t 

6.4 u 
I I I I I t 

0.6 I 
20.1 u 

-0.6 I I 1 I I t 
0.6 

0.3 

0 

-0.3 

I I I I 

23.6 d 
-0.6 1 I I I I t 

-1 .o -0.4 0.2 0.8 1.4 2.0 
xlc 

FIGURE 8. Contours of (a (u)/i3x+i3(u)/ay),  normalized by U J c ,  corresponding to the data of 
figure 7 for the indicated phases. Contour levels are same as in figure 7. 

contours of this quantity corresponding to three phases of figure 7. The non- 
dimensionalization and the contour levels are the same as in figure 7. As expected, the 
measurement error is found to be the largest on the upper surface when the DSV forms 
and is accompanied by strong reverse flows. In the wake, sufficiently far away from the 
airfoil, however, the errors are clearly minimal. Only during the passage of the strong 
vortices (e.g. 23.6"d case), do some errors occur owing to large flow angularity. These 
measurements in the wake can be compared with similar measurements for free jets, 
e.g. of Zaman & Hussain (1981). The measurement errors on the outer edges of a jet 
are large because there is no forward velocity in the ambient and the passage of the 
vortical structures invariably induce reverse flow. In comparison, even the lowest 
velocity in the centre of the wake is a large fraction of Urn and thus the vortical 
structures seldom induce reverse flow (except very near the airfoil). The wake flow 
measurements are thus relatively free from hot-wire errors. 

Two-dimensionality of the flow field was checked through velocity measurements at 
various spanwise ( z )  stations for constant x and y ;  these data have been reported by 
Panda & Zaman (1992). The phase-averaged velocity traces are quite similar indicating 
a reasonable two-dimensionality of the flow field. Note that the aspect ratio of the wing 
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FIGURE 9. Temporal distributions of (w,)  c / U ,  over a cycle, measured at x/c = 0.3; R, = 44000. 
Contour levels for -, positive vorticity start at 0.5 and ---, for negative vorticity at -0.5 and are 
at an interval of 0.5. (a) cz = O0+7.2"sin27iit, k = 0.028, (b) CL = 15.3°+9.70sin(2zft-~7i), k = 0.16. 

was 7.5 and all measurements reported in this paper were done at midspan and close 
to the trailing edge. 

3.2.1. Temporal distributions of (0,) 

Since the vorticity measurement via the spatial data acquisition technique involved 
extensive time and effort, such measurements were performed for only one case as 
described in the preceding. In order to further study the effect of various parameters, 
measurements of (w , )  ( y ,  t )  were performed at a fixed x-station (x/c = 0.3, if not 
mentioned otherwise) covering a complete period of oscillation, 0 < t / T  < 1. The term 
a (u)/ax in the expression for ( w , )  was evaluated by measuring ( u )  at three closely 
spaced x-stations with x/c = 0.3 being the middle one. Central differencing provided 
a (u)/ax(y, t )  while the term a (u>/ay(y,  t )  was evaluated by least squares fitting of the 
( u )  ( y ,  t)  profiles. (It is possible to simplify the measurements and obtain a (u)/ax via 
the Taylor hypothesis. This would involve measurement of (0) at only one x-station 
as a function of time, and calculation of a (u)/ax = - ( l / U c O n v ) a  ( u ) / a t  which, of 
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course, would provide only an estimate of i3 (v)/i3x; Zaman & Hussain 1981). Profiles 
of (w , ) ,  obtained from the two gradients, were measured typically for 24 y-stations 
covering -0.75 ,< y / c  < 1.0. Non-uniform y-steps were used to provide adequate 
resolution in the centre of the wake. 

The (w,)(y, t )  data are later used to evaluate the unsteady lift. Figure 9 shows the 
(w,)*  ( y ,  t )  distributions for the two cases described in the figure caption. For these two 
sets of data a detailed evaluation of the lift hysteresis loops will be performed, as will 
be elaborated shortly. Figure 9(b) represents a dynamic stall case, the subject of the 
paper, for k = 0.16. Figure 9(a) shows data for a,,,, = 0” and a, = 7.2”, a case chosen 
for which force balance measurements could be performed so that the lift variation 
estimated from the vorticity data could be compared directly. For the latter case, 
because of the small mean angle and small amplitude of oscillation, the vorticity 
distribution shows only a mild undulation. In comparison, the variations are large and 
the vorticity is distributed in lumps for the dynamic stall case in figure 9(b). The 
temporal distributions appear quite different from the spatial distributions of figure 7 
(the temporal distribution for k = 0.2, to be shown later, is not much different from 
that for k = 0.16). This is mainly due to different scaling of the abscissae. While only 
a fraction of the ‘wavelength’ is captured in figure 7, figure 9(b) shows a full 
‘wavelength’. Differences between the spatial and the temporal distributions are also 
expected because the flow at the measurement station is still evolving and is far from 
a case of ‘frozen flow’ (Zaman & Hussain 1981). A scrutiny of the data of figure 9(b) 
identifies the DSV and the TEV. The former is the concentrated lump of positive 
vorticity between the points I1 and 111; the latter is the concentrated negative vorticity 
between the points I11 and IV. The successive lumps of vorticity (on the right of the 
TEV) represent the vortices shed later. The measurement errors for these data were 
also estimated using the continuity equation as described earlier. The largest errors 
were of similar magnitude as shown in figure 8 (in the wake) and occurred generally 
at the interface of the DSV and the TEV. 

4. Estimation of unsteady lift from the vorticity data 
4.1. Analysis 

As stated in $1, the unsteady lift, L( t )  can be divided into two components; ‘non- 
circulatory’ LNC(t )  and ‘circulatory’ L,(t) (Bisplinghoff et al. 1955). The former has 
been alternatively referred to as the ‘virtual mass effect’ or the ‘acceleration reaction’ 
term (Batchelor 1967). This is dependent on k and can be negligible at small values of 
k. The latter component is, of course, due to the vortical flow arising from the airfoil 
surface. 

4.1.1. Non-circulatory part 
Theodorsen (1935) provided an analysis for this component of the lift for pitching 

as well as plunging motion of a flat plate based on the solution of the small disturbance 
potential equation (also see Bisplinghoff 1955). For pitching motion about the one- 
quarter chord point the expression reduces to 

LNC(t )  =pn- u,oi+-di , 
cz(  4 f ) 

where oi and di are the angular velocity and acceleration, respectively. With 

a(t)  = amean +a, sin (a@), 
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the non-circulatory component of the lift coefficient becomes 
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Cl,,(t) = xa,(kcos (2xft)  -;k2 sin (27cft)). 

A few observations can be made from the above equation. First, CIN, increases with 
k,  and becomes the dominant component at large k for a given flow condition. 
Secondly, Cl,, is linearly dependent on the amplitude (a,) but is independent of the 
mean angle (amean). Thirdly, the net change of Cl,, over a complete period of 
oscillation is zero. Finally, CIN, at a given a is different between the upstroke and the 
downstroke which yields a hysteresis loop in the CZ,, versus a curve. 

The decomposition of the total lift into the two components rests on linear 
assumptions allowing the superposition. When large vortices are present, and in the 
high k-range, nonlinear effects are expected. However, for small values of k, considered 
mainly in the present paper, the non-circulatory component can be negligible and the 
lift variation arises primarily owing to the circulatory component. 

4.1.2. Circulatory part 
It is the circulatory component which is estimated from the vorticity flux in the wake. 

Let us begin with a brief review of the method to determine lift for a steady airfoil. If 
we consider an impulsively started flow over a fixed airfoil, a ‘starting vortex complex’ 
is created which convects away from the airfoil. Once the steady state is reached, the 
net amount of vorticity shed into the wake over a finite time is zero and there is a 
constant circulation around the airfoil. This latter circulation associated with the 
‘bound vortex’, according to Kelvin’s theorem, is equal and opposite to that of the 
‘ starting vortex complex ’. As mentioned in 0 1, the force acting per unit length of a pair 
of counter-rotating vortices of circulation +r and -r separated by a distance x is 
given by 

d 
force = - ( p x r ) .  

dt 

For the steady airfoil, the ‘starting vortex complex’ moves away from the airfoil at the 
free-stream velocity, so that dx/dt = U,, and this leads to the expression for the steady 
lift, L = pU, r. 

For the unsteady case of an oscillating airfoil, there is also a ‘starting vortex 
complex’ shed before the periodic flow is established. However, the airfoil continues to 
shed an unbalanced positive or negative vorticity and the circulation of the ‘bound 
vortex’ varies periodically with the oscillation. If within a finite time, st, the circulation 
around all vortices shed into the wake is -8r, then by Kelvin’s theorem this amount 
should be equal and opposite to the change in the circulation 8T of the ‘ bound vortex’ 
occurring within the same time. At any instant the shed vorticity in the wake with 
circulation -6r and the corresponding change in the ‘bound vortex’ W, can be 
thought of as forming a counter-rotating vortex pair in which the vortices are moving 
away from each other at a convection velocity U,,,,; U,,,, is usually smaller than U,. 
Therefore, for the incompressible flow under consideration, the change in the lift in 
time 87 can be estimated as 

SL, = pu,,,, sr. 
The change in the circulation 8r can be found by considering the fixed path ABCD, 

which encloses the airfoil, as shown in figure I@). For a sufficiently large path, it is 
reasonable to assume that all vortical fluid is convected across the boundary CD only. 
For the two-dimensional, incompressible flow under consideration the time rate of 
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change of circulation around the path ABCD is obtained, for example, from equation 
(5.25) of Potter & Foss (1982) as 

By neglecting the contribution from the viscous term, which in the wake is smaller than 
the convection term by the order of the Reynolds number, one gets 

uw, dy. 
d T  

dt C D  

Therefore, one can write 

Substituting &(t) = j c D  uw, dy and integrating from time t = 0 one obtains 

L,(t) = - P ~ , , , ,  

The circulatory part of the lift at the beginning of the integration L,(O) represents a 
constant contribution towards the total lift from all vortices shed before time t = 0. 
This quantity cannot be determined from the vorticity flux and is assumed to be zero. 
However, this is just an additive constant and the integration, carried through a period 
of oscillation, provides the change in the lift from its value at time t = 0;  the shape of 
the lift hysteresis loop remains the same regardless of the starting point of integration. 

A simplification in equation (1) is that it neglects the effect of the distribution of 
vorticity around the airfoil (region ABCD, figure 1) to the unsteady lift. However, the 
‘bound vortex’ is not fixed at a point; it is distributed over the airfoil surface. Such a 
distribution will also contribute, although by a small amount, to the unsteady lift. The 
simplification is necessary in a practically feasible lift estimation procedure as 
measurement of unsteady vorticity around the airfoil would be extremely difficult. 
Effect of this simplification will be further discussed in the following in connection with 
equations (2) and ( 3 ) .  A caveat in (1) is in the original formulation 6L, = pU,,,,Sr. 
Making the assumption that the unsteady forces are due to the interaction of the shed 
vortex and the corresponding change in the bound vortex, neglects the interaction of 
the former with the bound vortex itself as well as with all vortices in the wake including 
the ‘starting vortex complex’. However, the effects due to the interactions of the shed 
vortex with the latter two vortex systems would mostly cancel each other, and thus 
equation (1) could be a reasonable approximation. But the accuracy has remained 
unclear. Note also that the formulation is equivalent to the application of the 
Kutta-Joukowski theorem to find the differential lift from the differential circulation, 
albeit using the convection velocity U,,,, instead of U ,  in the theorem. Of course, the 
convection velocity in the present context is not a clearly defined quantity. As discussed 
before, U,,,,, say for the DSV, varies with streamwise distance. The DSV moves slowly 
when it is near the trailing edge but accelerates farther downstream (Panda & Zaman 
1992). Thus, the choice of a constant U,,,, in equation (1) involves an averaging 
process. 

Alternative analyses for the unsteady lift calculation were searched for in the 
literature. This effort led to equations (2) and (3) ,  which are described in the following. 
It should be emphasized here that all of the analyses considered have simplifications 
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and a foolproof method is not in sight. The exercise in the following involves 
application of equations (lk(3) to a given set of uw,(y,t) data to obtain the lift 
hysteresis loops, which are then compared with one another and with other available 
data to assess the validity of each equation. 

The second equation for L,(t) is based on the flutter analysis of Theodorsen (1935). 
In this analysis the lift force on an unsteady flat plate is calculated from the 
instantaneous spatial distribution of vorticity in the wake. The wake is considered as 
a vortex sheet of strength yw per unit streamwise distance and the resultant expression 
for lift, given by Bisplinghoff et al. (1955) can be written in the present notations as 

For the present calculation the spatial vorticity distribution is obtained from the 
temporal data via Taylor’s hypothesis yielding yw dx = s uw, dy dt = &(t) dt ; where fl ,  
as before, is equal to the vorticity flux suwzdy, which is a function of time. The free- 
stream speed is replaced by the convection speed U,,,, to account for the slower speed 
of the large vortices shed during large-amplitude oscillation. The distribution of the 
wake vorticity at any instant consists of a combination of vortices shed during many 
prior complete cycles ( - n T  to 0) and a current partial cycle (0 to t). The integration 
is carried through the partial ‘wavelength’ from the trailing edge (corresponding to 
time 0 to t )  and then over ten additional complete ‘wavelengths’ (corresponding to 
time - 10T to 0). Increasing the number of complete wavelengths further did not make 
a significant difference in the result. With all these modifications the above equation 
can be written as 

The spatial location x in (2) is obtained by applying Taylor’s hypothesis a second time. 
As in (l), the term L,(O) represents the unknown, fixed contribution from all vortices 
(including the ‘starting vortex complex’) in the wake which are not considered in the 
integral expression. The primary difference between (1) and (2) is the weighting factor 
inside the integral of the latter. The weighting factor is greater than unity close to the 
airfoil and quickly decreases to unity for x > ic .  According to Von Kirman & Sears 
(1938), who also arrived at Theodorsen’s equation starting with F = d/dt(pxr), the 
weighting factor arises when the ‘bound’ vorticity distribution over the airfoil is also 
taken into account. The moment of this vorticity about the airfoil half chord position 
is non-zero. This makes an additional contribution to the lift, leading to the weighting 
factor. As discussed earlier, equation (1) does not take such a distribution into account 
(moment of the ‘bound vortex’ about the half chord is assumed to be zero), which also 
explains the absence of the weighting factor in equation (1). One notes that the 
weighting factor can be expressed in a binomial series as 

Thus the leading term in (2) becomes equivalent to (1) and the difference between the 
two lies in the contribution from the higher-order terms. Another difference between 
(1) and (2) is the lower limit of integration. However, when the lower limit in (2) was 
changed to 0 from - lOT, the difference in the result was negligible (the difference was 
found to be less than 1 % for k = 0.16). 
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Equation (3) is adopted after Wu (1981). Starting with the Navier-Stokes equation 
Wu derived the expression for L,(t) as 

L,(t) = pA//xwZdxdy. dt 

It states that the force in the y-direction (lift) equals the rate of change of the x-moment 
of all the vorticity in the flow field. Note that the above equation is a generalized 
formulation of the relation, force = d/dt(pxT), used to obtain (1). 

The above equation is based on first principles. Thus, if the vorticity distribution 
over the entire flow field were known the forces could be calculated accurately. 
However, as stated before it would be practically impossible to measure all the vorticity 
especially around the oscillating airfoil. Thus, the following approximations are 
needed. The moment of the vorticity distribution over the airfoil, assumed to act at the 
midchord, is once again neglected. From the measured distribution of w,(y, t) at a given 
x, a spatial distribution is constructed by invoking the Taylor hypothesis, as was done 
for (2). The unsteady lift, assumed to be acting at mid-chord, is then approximated as 

(X + f ~ )  cl( t) dt + L,(O). (3) 

Similar to (2), the position x is obtained by applying Taylor’s hypothesis a second time. 
Here it should be mentioned that Wu’s formulation would also provide drag 

and pitching moment through the rate of change of the quantities J” J”ywz dx dy and s sxywz dx dy, respectively. Theodorsen’s formulations as well as a variation of (1) 
would also enable estimation of pitching moment. In this paper, however, we have only 
covered estimation of the unsteady lift. 

4.1.3. Method of calculation 
Phase averaged axial velocity ( u )  and the spanwise component of vorticity (w,) are 

used to evaluate all of the above equations. With appropriate non-dimensionalization, 
the full expression for the periodic variation of the lift coefficient Cl, is approximated, 
say from (l), as 

Cl,(t) = -2- uconv ‘l lC, (u)* (o,)* dy* dt*. 
c 

The superscript * represents non-dimensionalized quantities (lift is non-dimensional- 
ized by ~pu“,c,(w,) by U J c ,  y by c and t by T ) .  From the actual discrete 
measurements of ( w Z ) $  and (u)$ (where i = 1, NT and j = 1, N Y ;  NT:  number of 
intervals in a cycle and N Y :  number of y-steps) the above equation at any timestep 
n + 1, 1 < n < NT, is evaluated as follows: 

~ c o n v  T C N Y  C (u):. <wz>:. Ay? At:. Cl,(n+ 1) = -2- 
i = l j = 1  

As stated before, C1,(1) is assumed to be zero. 
As discussed in connection with figure 8, the hot-wire measurements in the 

immediate vicinity of the airfoil trailing edge are marked by errors due to occasional 
flow reversal. On the other hand, implicit in the estimation of lift from the unsteady 
wake survey is the assumption that the vorticity field has not evolved significantly by 
the distance of the measurement station. At a far downstream location, if the time 
variation of vorticity has changed through interaction and evolution, a wrong time 
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% closing c c I <u>: <%):I 
u R, x 10-3 k error absolute vorticity flux 

15.3"+9.7" 44 0.05 - 1.26 1.03 
44 0.1 -4.03 0.95 
44 0.16 4.04 0.94 
44 0.2 2.78 0.93 
44 0.4 1.83 0.95 
22 0.4 1.66 1.02 
22 0.6 11.9 1.03 
22 0.8 3.8 1.1 
22 1.2 3.8 1 .o 

15.7'+7.2" 44 0.2 13.3 0.85 
44 0.4 9.1 1.07 

14.1'5 14.1" 44 0.2 8.5 0.88 
44 0.4 15.7 1.04 

0" f 7.2" 44 0.036 7.9 0.34 
44 0.028 1.6 0.34 

TABLE 1. 'Closing error' and 'absolute vorticity flux' for different cases 

history of the forces would be estimated. Also implicit in the method is the assumption 
of two-dimensionality in the flow. At a far downstream location three-dimensional 
effects would set in the flow. Thus the measurement station needs to be as close to the 
airfoil trailing edge as possible. The choice of measurement station is dictated by the 
conflicting requirements; it needs to be close to the trailing edge yet far enough 
downstream to avoid large hot-wire errors. Thus all wz( y ,  t )  measurements are carried 
out at xmeasJc = 0.3. This, however, introduces a time lag between the instants of 
measurement and the corresponding 'event' taking place over the airfoil. This time lag 
is estimated as, - x,,,,/ U,,,,, and accounted for in the calculation of the lift variation. 

4.1.4. ' Closing error' and 'absolute vorticity flux' 
An interesting condition arising from the requirement of finite lift on the airfoil is 

that the total change of lift over one complete period of oscillation should be zero. 
Therefore, the above calculation requires 

Usually, owing to measurement errors this condition is not satisfied. This leads to 
Clc( 1) $: CI,(NT+ l), i.e. an unclosed hysteresis loop. For brevity, the deviation of this 
sum from zero is distributed over the entire cycle and only the resulting closed loops 
are presented in this paper. The 'closing error', expressed as 

N T  N Y  

c c (u>z'j <%>z'jAYj* At: 

c. c I(U>$ <%>:I AYj* At: 
x 100, 6-1 j=1 YO error = N T  N Y  

i=l j=1 

is listed in table 1 for all the measurements. The denominator of the above expression 
represents the sum of the absolute values of all vorticity shed in a cycle of oscillation. 
This is referred to as the 'absolute vorticity flux' and is also listed in table 1 which will 
be discussed in 94.4. 
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FIGURE 10. Cl us. a measured with a force balance for the case of figure 9(a): 

a = 0" + 1.2" sin 2nft, k = 0.028. ---, Steady state variation of C1 with a. 

4.2 L f t  variation for  a = 0" + 7.2" sin 2nft 
The unsteady lift variation for this oscillation condition, at k = 0.028 ( f  = 0.57 Hz) 
and R, = 44000, was measured with a force balance and also estimated using the above 
mentioned calculation procedures. The force balance data are presented first followed 
by a comparative evaluation of the calculations. 

4.2.1. Force balance data 
The unsteady lift variation measured by the force balance is shown in figure 10. The 

very low value of k was chosen to minimize harmonic distortions of the load cell signal 
(92). The steady state lift variation, also measured by the same force balance is shown 
by the dashed line. The latter shows a kink around a = 0", which, as discussed in the 
following, is believed to be due to laminar separation at this low operating Reynolds 
number. Such departure from linear variation owing to laminar separation has been 
observed by others (e.g. Mueller & Batill 1982). 

The unsteady measurements show a hysteresis loop even at this low oscillation 
frequency. The variation in the upper and the lower branches of the loop bear 
similarities with the steady-state lift variation. At first sight, the hysteresis loop is 
unexpected, since the dynamic stall phenomenon should not appear when the airfoil is 
oscillated within its static stall limit (Carr 1985). However, it is believed that laminar 
separation is responsible for the hysteresis loop in much the same way as for the kink 
in the steady lift variation. For the steady airfoil, the flow remains separated on both 
surfaces around a = 0" resulting in near zero lift (Mueller & Batill 1982; Zaman & 
McKinzie 1991). Only when the angle of attack is increased (or decreased) sufficiently, 
does the flow reattach on the upper (or lower) surface resulting in the increase (or 
decrease) in lift. For the case of oscillation, the extent of the laminar separation on a 
given surface of the airfoil presumably depends on the direction of motion. In other 
words, the extent of the separation at a given value of a on a given surface of the airfoil 
during upstroke is different from that occurring during downstroke. This apparently 
causes the observed hysteresis loop in the Cl curve. It is noteworthy that the flow 
exhibits the hysteresis and has not reached a quasi-steady state even at this low 
frequency of oscillation of 0.57 Hz. 
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FIGURE 1 1 .  Estimated Cl, us. a from the data of figure 9 (a); a = 0" + 7.2" sin 27$, k = 0.028. 

(a) to (c) obtained using equations (1) to (3) (see text), respectively. 

4.2.2. Estimated lift variation 
Figures 11 ( ak l  I( c) show the lift hysteresis loops constructed from the data of figure 

9 (a) using equations (1k(3), respectively. The solid line represents the calculated 
circulatory part and in each figure this is plotted such that the mean C1 at a = 0" 
matches the corresponding steady state value of the Cl. The non-circulatory component 
is negligible at this low value of k. The lift curves obtained by all three equations exhibit 
hysteresis loops which are essentially similar and differences occur in the details. These 
loops are also very similar to the actual C1 variation of figure 10 and the maximum and 
minimum amplitudes are well represented. This reasonable agreement provides a 
validation of the lift estimation technique, at least for the small amplitude of oscillation 
case. That the data for figures 10 and 11 are for the low-Reynolds-number case is 
incidental, and it is believed that the method should work just as well at high Re. It 
should be emphasized here that the data of figure 11 were very sensitive to small 
changes especially in oscillation frequency and in hot-wire calibration. This sensitivity 
could be partly attributed to the laminar separation which is known to be sensitive to 
the ambient conditions. Also the vorticity flux was small and thus accurate 
measurement was difficult; every time these data were retaken there was some 
difference in the lift hysteresis loop. This could explain the differences between the 
estimated loops (Fig. 11) and the actual variation (Fig. 10). 

4.3. Lift variation for  k = 0.16, a = 15"+ lO"sin(2nft-in) 
The circulatory component of the lift coefficient for k = 0.16 and R, = 44000 is shown 
in figures 12(a)-12(c) as given by equations (1k(3), respectively. The data set of figure 
9(b) is used for these results. Once again, the predictions are comparable and 
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FIGURE 12. Estimated CI, us. a from the data of figure 9(b); a = 15.3°+9.70sin(2.nft-~.n), 
k = 0.16. (a) to (c) obtained using equations (1) to (3) (see text), respectively. 
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FIGURE 13. Estimated, unsteady component of Cl us. a obtained by adding the results of equation (1) 
(figure 12a) and the 'non-circulatory' component. The latter is represented by the dashed curve. 
k = 0.16, R, = 44000, M = 0.019. 

differences occur mainly where there are steep variations. For example, the magnitude 
of the large drop in the lift around 25" is predicted differently by the different 
equations. Since equation (3) involves differentiation, the resulting curve appears 
somewhat 'jagged'. Unfortunately, there is no way to judge at this stage the relative 
accuracy of these finer differences. However, the fact that the predictions are similar for 
all three equations should be viewed as added confirmation that the overall features of 
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FIGURE 14. Total Cl variation with a for k = 0.153, a = 15"+ lO"sin2nft: (a) experimental data of 
McAlister et al. (1982), R, = 4.8 x lo5, Mach number, M = 0.036; (b) computational data of L. N. 
Sankar (see Wu et al. 1990), R, = 3.45 x lo6, M = 0.283. 

the unsteady lift variation have been estimated successfully from the wake data. Of the 
three, equation (1) is perhaps the easiest to follow as it has similarity with the equation 
for steady lift calculation. In the following, further results on the unsteady lift variation 
for the dynamic stall case, obtained by using equation (l), are presented. 

The circulatory component of Cl from figure 12(a) is added to the corresponding 
non-circulatory component ($4.1) and the sum is shown in figure 13. The non- 
circulatory component is shown as the superimposed dashed curve which can be seen 
to be relatively small. The total unsteady Cl of figure 13 can now be compared with 
data from the literature. (As discussed before, the data in figure 13 show departure 
from the steady lift, and the Cl values are referenced to the value at a = 5" where it is 
assumed to be zero.) Two sets of data for similar values of k are shown in figure 14. 
The data of McAlister et al. (1982), obtained by static pressure distribution 
measurement, are shown in figure 14(a). Figure 14(b) is included from a computational 
study by L. N. Sankar (private communication; see Wu, Huff & Sankar 1990), for 
conditions similar to that in figure 14(a). The overall features of the Cl variation in 
figure 13 can be seen to be similar to the data sets of figure 14. The slope of the upper 
branch (between I and 11) and the small anti-clockwise loop around a = 25" (between 
I11 and IV) in figure 13 are in reasonable agreement with the data of figure 14(a). The 
main difference occurs in the lower branch of the loop. However, some differences are 
not unexpected as the lift hysteresis loop is known to be sensitive to flow parameters 
other than k, e.g. surface roughness, aspect ratio etc. The Reynolds number R, was also 
quite different between the two experiments (4.4 x lo4 in the present case as opposed 
to 4.8 x 10'). The undulations on the lower branch, however, have been observed in 
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other experiments (Leishman 1990), and can also be observed in the computational 
result shown in figure 14(b). 

4.3.1. L f t  hysteresis loop vis-a-vis measured vorticity 
The variations in the lower branch of the lift hysteresis loop, as discussed above, are 

believed to be real and due to the passage of the successive vortices following the DSV. 
In fact, the present way of estimating the lift provides a unique opportunity to relate 
various features of the hysteresis loop with the different vortical structures observed 
through the vorticity maps and the flow visualization. As discussed earlier, for the case 
under consideration, nearly all the positive (clockwise) vorticity generated from the 
airfoil suction surface accumulates to form the DSV during the upstroke (between 
points I and I1 in figures 9b and 13). This is reflected in the wake as a depletion of 
positive vorticity. However, the negative vorticity generated from the pressure surface 
is shed in the wake as usual. Qualitatively, a large negative vorticity in the wake is 
equivalent to a ‘starting vortex’ and a large positive vorticity is equivalent to a 
‘stopping vortex’. When the former is shed, circulation around the airfoil as well as lift 
increases, while shedding of the latter causes a drop in the lift. Thus, between points 
I and I1 the airfoil lift increases and between points I1 and 111, when the DSV 
containing positive vorticity is shed, the lift drops. The rebounding of the lift near the 
highest angle of attack during the downstroke (I11 to IV) is due to the shedding of the 
trailing-edge vortex which contains a concentration of negative vorticity. The 
undulations in the lower branch of the hysteresis loop occur owing to the passage of 
a few more, relatively weaker positive and negative vortices following the DSV and the 
TEV (IV to I). Further comparison of the lift hysteresis with corresponding (w, ) *  data 
for other values of k are given in the next section. 

4.4. Vorticity and lift hysteresis at diferent k and a, 
In order to study the parametric dependence of the dynamic stall and the corresponding 
lift hysteresis, the ( w , )  ( y ,  t )  distributions were measured and the lift hysteresis loops 
were computed for different values of reduced frequency k and amplitude a,. Figure 
15(a) shows vorticity data for various k similar to the data presented in figure 9. 

The ‘closing error’ and the ‘absolute vorticity flux’ for the data of figures 9 and 
15 (a), as well as a few other sets not presented here, are tabulated in table 1. Referring 
back to 44.2, recall that the closing error represents the difference between the first and 
the last point over a period in the computed Cl variation. This difference should be 
zero, which physically signifies the fact that the amounts of positive and negative 
vorticity convected into the wake over an oscillation cycle should be the same so that 
the net amount is zero. Owing to measurement errors, however, the lift values 
computed from the (a,)* data do not return to the original value at the end of the cycle 
resulting in the unclosed loop. It should be emphasized that this is a cumulative error 
integrated over the entire period for all the data. Thus, even though some of the 
numbers for the closing error in table 1 are in double digits, in view of the complexity 
of the measurements, these should be considered as small. 

An interesting observation can be made from the ‘absolute vorticity flux’ data of 
table 1. This quantity represents twice the amount of the positive (or absolute negative) 
vorticity, shed into the wake over the period. It is seen to be approximately a constant 
(with appropriate non-dimensionalization), and independent of k,  R, and a, but 
dependent on amean. The size, shape and the sequence of formation of the various 
vortices vary depending on the oscillation parameters but the net amount of positive 
or negative vorticity carried by all such vortices in one oscillation cycle do not change 
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significantly. Therefore, when the oscillation frequency and amplitude are changed, the 
vorticity generated from the airfoil surface is simply redistributed over the period. 
When a,,,, is changed, however, the amount of positive or negative vorticity shed 
over the period is found to change considerably. This change occurs presumably 
because the mean pressure gradients near the leading edge and around the airfoil are 
changed when amean is changed. Since the pressure gradients are the primary source 
terms for the spanwise component of vorticity (Reynolds & Carr 1985), the observed 
change in the vorticity generation is qualitatively accounted for. 

The lift hysteresis loops corresponding to the (a,)* data of figure 15(a) are shown 
in figure 15(b). Again, the solid lines represent the sum of both ‘circulatory’ and ‘non- 
circulatory’ parts while the dashed lines show the latter only. The Cl data can be 
discussed in comparison to the corresponding (w,)* data. For the lowest k(= 0.05), 
the dynamic stall vortex is not well developed and the airfoil behaves in a quasi-steady 
manner (Panda & Zaman 1992). The (a,)* data show a thick wake for most of the 
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FIGURE 15. Effect of k for a = 15.3°+9.70sin(2~ft-$); R, = 44000 for k = 0.05 to 0.4 and R, = 
22000 for k = 0.8. (a) (0,) c / U ,  contours similar to the data of figure 9. (b) Estimated unsteady 
component of C1 us. a; dashed curves represent non-circulatory component. 

oscillation cycle indicating a stalled flow. The resulting lift hysteresis loop is also very 
small. The unsteady effects become prominent as k is increased above 0.1. Between 
k = 0.16 and 0.4 the main features of the (w,)*  distribution, namely the thinner wake 
with stronger negative vorticity followed by the DSV and the TEV, are quite similar 
except for a progressive phase shift in the appearance of the vortices with increasing 
k .  This is the same phase delay as discussed in $3.1. At k = 0.16 (for which (o,)* data 
are in figure 9b), the DSV and the TEV are shed before amaz(t/T > 0.5). This results 
in the small counter-clockwise loop at the lower right-hand corner. At k = 0.2 the lift 
increases throughout the upstroke, dropping near amas when the DSV is shed, and the 
resulting lift curve has only one large loop. As k is increased beyond 0.2, the lift keeps 
on increasing beyond amaz when the angle of attack is actually decreasing. For k M 0.3 
the sudden drop in Cl, associated with the shedding of the DSV, appears in the middle 
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of the downstroke. Therefore the k = 0.3 and 0.4 cases show a second loop around 
amaz. A very similar sequence of change in the appearance of the lift hysteresis curve 
was also measured by Carr et al. (1977), in the range 0.1 < k < 0.25, from static 
pressure distribution data. However, the present data, allowing direct comparison of 
the lift variation with the vortices in the flow field, make it amply clear that the 
observed changes in the lift hysteresis are mainly due to the phase delay in the 
appearance of various vortices as k is increased. 

With increasing k,  the sequence of events become more complex. The (w, ) *  
distributions appear progressively different. At k = 0.8 multiple pairs of vortices are 
found to be distributed over the entire period. The resulting Cl versus a curve for k = 
0.8 exhibits three loops. The non-circulatory component, shown by the dashed curves 
in figure 15(b), can be seen to grow in amplitude with increasing k and becomes the 
dominant contributor to the unsteady lift for k values above about 0.8. 

Finally, in figure 16 a set of data are presented for varying amplitudes of oscillation 
with a,,,, z 15". The corresponding (w, ) *  data are not shown for brevity, but some 
of the corresponding features are listed in table 1. Data for k = 0.2 and 0.4 are shown 
for two amplitudes each. Corresponding data for the intermediate amplitude have been 
shown in figure 15. It becomes clear that the overall shapes of the hysteresis loops 
remain similar, only the size of the loop increases with an increase of amplitude. This 
is in general agreement with the data of Leishman (1990). However, Ohmi et al. (1990) 
observed that at very high k the effect of increasing a, was equivalent to a decrease in 
k and vice versa. For the present data, the variation in the Cl loop for the four cases 
of figure 16 agrees with the sequence of events seen in the vorticity data. Limited flow 
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visualization also indicated that the sequence of DSV and TEV and the phase delay in 
their shedding remain essentially unaltered with varying amplitude for a given k. 

5. Concluding remarks 
The significant observations and conclusions of the present study are enumerated in 

the following. 
1. In addition to the well-known dynamic stall vortex (DSV) formed near the 

leading edge, an intense vortex of opposite sense is observed to form near the trailing 
edge (TEV) just when the DSV is shed. The combined DSV and TEV grow to a very 
large size and take the shape similar to the cross-section of a ‘mushroom’ as they 
convect away from the airfoil. For values of k in the range 0.2-0.4, the transverse extent 
of the ‘mushroom’ structure measures about three chords just three chords 
downstream of the trailing edge. At large k the flow fields are complex, for example, 
at k = 1.6, the ‘mushroom’ structure becomes inverted and two DSVs are observed to 
reside over the suction surface during part of the oscillation cycle. 

The phase delay in the shedding of the DSV is found to vary approximately linearly 
with varying k over the full range of k covered in the experiment. 

2. The flow field is documented in detail using the phase-averaging technique. The 
measured evolution of the vorticity field over a cycle agrees well with the flow 
visualization photographs. 

It is observed that the sum of either all clockwise or all counter-clockwise vorticity 
convected into the wake over a cycle is nearly constant and is independent of the 
reduced frequency and amplitude of oscillation but dependent on a,,,,. As expected, 
the sum of all vorticity shed over the cycle is found to be nearly zero. 

3 .  A new method of estimating the unsteady component of lift from the vorticity 
flux measured in the wake is presented. The ‘circulatory’ component of the lift is 
estimated as L, = density x U,,,, x cumulative vorticity flux shed by the airfoil from 
the beginning of an oscillation period, where U,,,, is an average convection velocity. 
The analytical foundation of this method is discussed and alternative equations with 
different approximations are considered. The ‘ non-circulatory ’ component is de- 
termined using Theodorsen’s analysis. It is found that the estimated lift hysteresis 
loops compare well with limited force balance data for small oscillation amplitude with 
a,,,, = 0”. Direct comparison was not possible for the dynamic stall case, but the 
estimated lift variation showed reasonable agreement with data from the literature. 
Assumptions of two-dimensionality of the flow and insignificant evolution of the 
vorticity field are implicit in the estimation. From both of these considerations the 
measurement station should be as close to the airfoil trailing edge as possible. Possible 
application of this method to three-dimensional flow will require more research. 
However, although approximate, the method is a novel one and could be of interest in 
similar experiments in the future as the lift hysteresis loop is obtained strictly from 
wake surveys without direct force or static pressure distribution measurements. 

4. By comparing various features of the lift hysteresis loop with the corresponding 
vorticity fields and the flow-visualization photographs, the following observations are 
made for a low k case: (a)  The large lift occurring during the formation of the DSV 
is associated with an accumulation of positive vorticity on the airfoil upper surface and 
a depletion of the same in the wake. (b) As observed by previous investigators, the 
sudden drop in the lift occurs when the DSV leaves the airfoil surface. (c) The 
rebounding of the lift following the sudden drop is caused by the passage of the TEV. 
( d )  Small oscillations seen in the lower branch of the hysteresis loop, also observed in 
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a computational study cited in the text, are due to the generation and shedding of 
several smaller vortices following the DSV and the TEV. 

5. Hysteresis loops in the Cl us. a curve are constructed for several values of the 
reduced frequency in the range 0.05 < k < 0.8 using the method based on the wake 
survey. It is found that certain major features of the lift hysteresis at various k can be 
linked to the phase delay in the shedding of the DSV. For k < 0.2 the DSV is shed 
before a,,, is reached causing a small counter-clockwise loop at the lower right-hand 
corner of the larger clockwise loop. At k = 0.2 the lift increases throughout the 
upstroke until the DSV is shed around a,,, resulting in a lift curve that has a single 
clockwise loop. For larger values of k the lift keeps on increasing beyond amas, as the 
shedding of the DSV is delayed, resulting in a second counter-clockwise loop at the top 
right-hand corner. With a further increase in k the hysteresis loops become increasingly 
more complex owing to the multiple vortical structures involved in those cases. 

While the ‘non-circulatory’ component is small and negligible at low k, it becomes 
progressively larger with increasing k and for the case studied becomes the dominant 
one for k > 1. 

Varying the amplitude of oscillation for a given k did not change the shape of the 
hysteresis loop, only the size varied proportionate to the amplitude. 
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associateship. The authors would also like to acknowledge helpful comments from Dr 
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